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INTRODUCTION

1. This paper is an outcome of studies in Aircraft Attrition,
the bulk of which were completed in early 1985. It deals with some
of the theoretical aspects of using a limited amount of data to
evaluate the parameters of a commonly accepted 'learning curve'
model, and to determine the reliability of those values. The
statistical techniques used are not 'state of the art', but equally
are not rudimentary. Computer assistance in the application of
these aspects can be considered lighly desirable.

2. The work documents and demonstrates an approach to

Attrition modelling using Maximum Likelihood Estimation (MLE) and
Jackknifing with a worked example from attrition modelling for the
F/A-18 aircraft. Use of XLE is highly recommended for situations in
which Normal distributions are not applicable. Jackknifing is an
additional technique for improving the reliability of parameter
estimates by reducing both bias and the effect of outliers. In
addition it can allow error bounds on the estimates of single
parameters to be approximated.

Rationale

3. While this paper has been written principally foc the
attrition analyst, it is appropriate to outline the re.sons fur
adopting this particular approach.

4. Present practice in some areas is to fit (by least squares
regression) a straight line to cumulative attrition data.
Unfortunately, classical line fitting processes require that each
data point be substantially independent of all others. Cumulative
data, by its very nature cannot be independent since a change in one
value will alter all those values that come after it. To overcome
this problem given cumulative data, the differences between adjacent
observaticns may be used instead. In attrition terms, this is the
time between losses.

5. Another practice in some areas is to use least squares for
regression or point estimation to determine the mean or trend of
time between losses. Unfortunately the least squares approach

* requires that the variation of the data about the point or trend
line be generally symmetric and preferably approximately Normally
distributed. Attrition data however tend to have exponentially
distributed times between losses. This is a phenomenon that has
been observed in practice, and which is supported theoretically
under the proposition that the probability of loss in any one short
time interval is the same as in any other, for periods when learning
effects can be neglected. The exponettial distribution as it stands
or even when transformed by taking logs, is not symmetric.
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6. The approach adopted for this paper has boon to assume
that attrition intervals are (locally) exponentially distributed but
with a mean that increases with flying experience. Vhile an
exponential learning process has been used, the more general Weibull
distribution has not been adopted sinrne it restricts theoretical
learning process options. With some additional work the analyst may
follow the general lines of this paper using another form of
learning such as exponential to an asymptote etc. A frequently used
methodology for handling parameter estimation in non-Normal
situations is that of Maximum Likelihood Estimation (MLE) and is
adopted here.

7. Data from distributions which have long tails (e.g. the
exponential) can sometimes have atypical values (outliers) that
affect the estimate of the parameter required. The effect of
outliers can be reduced using a technique called Jackknifing. in
addition, Jackknifinig produces intermediate values which are more
likely to be approximately Normally distributed that the original
data. when this is the case, it allows classical statistical
methods to be used in estimating the accuracy with wrhich the single
parameters have been found. Other methods for determining accuracy
are often difficult to apply. A further advantage of Jackknifing is
that it reduces any bias that is intrinsic in the estimation
process.

Assumptions for Attrition Modelling

8. Attrition studies generally assume that over short periods
each individual attrition or 'event' is independent of any other and
that events occur with equal probability in equal time intervals.
From this it follows that the Poisson distribution describes the
numbers of events occurring in set time intervals or, equivalently,
that the times between successive events are Exponentially
di',tributed (over short periods).

9. Another co imon assumption is that over long periods the
attrition rate decreases with incr,--ing operational experience, and
that this decrease is exponential, as for example in the following
equation:

Em- Ahm  (1

where E is the expected number of events per unit of operating timae,
(e.g. attritionj per flying hour) and h is the cumulative operating
time. A, B are constants requiring statistical evaluation. This
can represent a form of learning wheve;' with experience, fewer
losses occur. The learning process is generally fairly slow,
however, and may even depend on the attritions themselves (i.e.
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Rquation I could be an approximation of a series of steps). The
relatively slow learning is assumed to be such that Infringement of
the Poisaon/gxponential requirements can be neglected. This
pa~rticular approach to the problem also has considerable flexibility
in alternate model selection since different forms of learning
equation can be adopted, using the same general approach (e.g.
exponential learning to ana asymptote).

10. integrating Equation 1 from time h. to h gives the
expected cumulative number of events (C) that have occurred up to
time h:

A (h1l -2 h o 
(2

1-

Since it is a cumulative value, C must be positive and continuously
increase, either to an asymptote (1-B negative) or indefinitely (1-B
positive). In addition if the number of expected events per unit
time is decreasing (i.e. 'learning' is faster than 'burnout') then B
must be positive, although negative values for B do have a physical
significance.

11. The other constant (A) in Equations 1 and 2 must also be
positive since both cumulative operating time (h and number of
events must be positive.

12. In summary then, the assumptions are:

a. ovor short periods, tines between events are veill
approximated by the exponential distribution and thus
numbers of events per unit time approximate the
Poisson distribution;

b. learning applies ill an exponential manner
(Equation 1); and is a factor in determining the mean
of the exponential distribution at any given time;
and

c. constant A ot Equation 1 must be positive.

13. Although the Poisson distribution and the cumulative
events model (Equation 2) are frequently encountered in attrition
modelling, they are not really satisfactory as statistical models
since:
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a. in this context the Poisson distribution requires an
artificially defined unit of time within which the
number of events must be counted; and

b. in the cumulative model, sequential observations are
not independent.

To avoid such problems, time between events aay be used instead, and
therefore the model to determine the essential parameters A and B
ist

ho

A

O-ti/

and p(t) - (4)
m

where A and a are constants as before,

h is the cumulative operating experience,

m is the mean time between events,

t is the time between events, and

p(t) is the probability density function of t.

14. Observations of intir-event times are generally numbered
in chronological order. This numbering, represented by 'i' is then
used to index the model variables (m, t and h). Thus the time
between events is related to cumulative time through:

tj - hi - i-()

where ho - 0 usually

and Equations 3 and 4 can be rewritten:
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m, -- )
A

sxp(-tj/mU )

p(t 1 ) - (7)

where h, is the cumulative operating experience at event i,

m1 is the mean interevent time at event i, and

ti is the time between events i-i and i.

15. Thus Equations 5 to 7 represent the statistical model of
exponential learning (Equation 6) with an exponentially distributed
time between events.

Initial Parameter Estimation by MLE

16. It is common practice to assess the parameters of models
using the method of Least Squares. This method works well when the
distributions underlying the data are Normal or even when they are
just symmetrical. However it has been found that skew distributions
such as the exponential do not respond so well. In this case an
alternative methodology can be evolved using Maximum Likelihood
Estimation (MLE) techniques. When applied to fitting straight lines
through Jata distributed normally across the line, MLE gives the
same result as the Least Squares method. AS its name implies, MLE
yields parametei value estimates which maximize the likelihood of
occurrence of the set of observed values, given the underlying
distribution.

17. Following the techniques for MLE outlined in Reference 4,
the method for this problem is to obtain analytically the overall
probability of all the n observations occurring. That is to
maximize

P - PIP2"'.Pi .. P,

where pi are distributed as p(t,) in Equation 7 and P is to be
maximized with respect to A and B. It can .,e shown that this is
equivalent to maximizing:
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Q - ln(P) - ln(p1 )

- (-tj/&lt -Iln(st) 8
i

which can be solved for A and a (implicit in a1 ) by using two
simultaneous equations obtained from partial differentiation. Por a
maximum, the partial derivatives must be serot

bQ
-- 0

IA
(9)

to
-- m0

an

it should be noted that these derivatives can be expanded, so:

-m -1-0
aA "km aA )D (10)

aQ !Q amnj
and -- a, -0

aB (am1  n

Evaluation of the derivatives can therefore proceed by partial
differentiation of 0 with respect to m,, and m, with respect to A
and B. Differentiation of Equation 8 with respect to mi yields:

-- am " + m•;(11)

ii

OQ
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and differentiation of Equation 6 with respect to A and a yields:

SRI -ho -&i

SRI ln(hs )
- U h- -- 1ih)

in A

Thus the two simultaneous Equation 10 are:

l + -ml 0

which may be simplified to:

I I1

tj

and lnlh,) " 'i (h 1j 14)
04
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Ezpanding a, as in Equation 6 allows theme equations to be rewritten
asl

A - th (15)

* ln(hi)

A - -(16)

i~

Evaluation of A and B proceeds by selection of a value for 5, which
is used to evaluate A through each of Equations 15 and 16. The
difference between these two A values is then used te predict a new
S, aiming for zero difference in the A values. The process is then
repeated until !quations 15 and 16 give the same results.

38. In the event that S is defined by some other method or
process, (for example through data from aircraft of the same generic
type) Equations 9 to 14 still apply, thus allowing Equation 15 to be
used to evaluate A directly.

Izproving and Assessing Parameter Estimates by Jackknifing

19. The preceding section has showr how to estimate the
parameters A and a, given a set of data. The process of
Jackknifing, in general terms, re-assesses such parameters, using
only a reduced date set, but for all possible reduced data sets.
The name of the technique is said to have arisen from the fact that
the blade of a Jackknife folds back into itself, just as the set of
original observations are folded back into themselves. For example,
a data set, of say n observed events, reduced by one observation,
will give n reduced subsets of size n-l observations. These subset
estimates are then suitably combined with the original estimate
(from the whole data set) to give an improved parameter estimate.
Also of importance however, is the fact that the distribution of the
subset estimates is often such that Student's t distribution can be
applied to give a first approximation to the confidence limits on
the improved estimate. It should be noted that there is no
theoretical assurance of the applicability of Student's t in all
circumstances, but reasonable results appear likely in many
practical situations. Maximum likehood estimatinn is thought to be
particularly suitable for use with Jackknifing. The approach used
here is based on that of Reference 1.
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20. A few points need to be mentioned about Jackknifing and
extreme points. The gross impact of the Jackknife ia, reducing the
effect of occasional extreme points on the estimate should not be
underrated. fr example, given 20 data points the chance that all
of them will lie inside the 95 per cent band is only about 1/3,
(i.e. 0.95"), and those outside it may abnormally bias the simple
estimate. Note, however, that estimates which utilize points from
the extremes for their result, or which take no values from such
extremes (e.q. order statistics), may not respond well to
Jackknifing. Conversely, estimates such as means, variances etc.,
for skew distributions with long tails should to respond better to
the technique. This latter case is the region into which attrition
modelling fits.

21. Briefly, the definitions and equations required to
Jackknife by dropping single observations are detailed below. A
simplified and modified form of the notation of Reference 1 is used
in order to clarify the presentation:

a. A parameter 0 is required (e.g. mean, standard
deviation, constant in a regression line, etc).

b. There is a data net of observations, each complete
observation identified by x, (i - 1 to n) and the
whole set identified by jt. Subsets are identified by
X-, which represents X less observation xi.

c. t, is the estimator of 0 from X.

d. t-1 the estimator of e from X-.."

e. The Jackknifed estimate of 0 is t*:

t - nto (17)

n
i

If confidence intervals are required then additional definitions are
needed:
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f. So called 'pseudo-values':

t-, - nt. - (n - 1)t-, (18)

wk'ich relate to the Jackknifed estimate of e as

i
t*

n

g. The variance of t* is var(t'):

1t-*i - nlt" )2

i
var(t*l - (a - 1)

which is the conventional definition of a sample
variance for observations t*i. This may be simplified
to:

i-ti ti
var(t*) - n(n - 1) -In (20)

n n J

h. Application of the Student's t distribution is subject
to the distribution of t-, being approximately Normal,
using n-l degrees of freedom for the n values of t-i
and is to

(t" - e94n
(21)

4var(t*)

In practice the pseudo values are simply scaled and translated t.i
(Equation 18) so Normality in the t-i is all that needs to be
approximated.

22. Should it be necessary to estimate confidence intervals on
more than one parameter, likelihood ratio tests may be considered.
If it is felt that the pseudo-values are drawn from a multivariate
Normal distribution, the likelihood ratio tests lead to the T2 test
as an analogue of the t-test. Details may be found in Reference 6.
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23. There are some other very broad conditions whic, should be
met for the technique to be applicable. Other than a
differenti*ility condition, and to say that most continuous
parametric statistical situations meet the conditkons, their
discussion is beyond the scope of this paper (for more details see
References 1 and 2). The differentiability condition is that t
estimates a function that after differentiation is continuous.
Amongst other things, this implies that the estimator be
unconstrained, and therefore the constant A (from the learning
model) cannot be Jackknifed. Constant B, while conceptually
constrained can in fact be estimated at a value outside its
conceptual constraints through an abnormal (but posaible) data set.
To solve the problem for A, the log of A can be used, giving
multiplicative rather than additive confidence intervals. Solutions
for the B problem will be specific to the situation, the data set
and the certainty on the bounds of B. In many cases it may be
acceptable that 'unlearning, can occur, especially in the case of
ageing equipment, new operating practices or conditions, and new
operators. The concept of an upper bound on the total number of
events may also be acceptable, particularly if only a limited range
of cumulative operating experience is to be modelled. Both
logarithms and fractional (e.g. x/(a + bx)) transforms can be
considered if necessary, but care should be taken as they will
affect the confidence limits considerably.

Example

24. Attrition data for the F/A-18 on a world wide basis,
excluding losses that are not flying related has been used. As much
of this work was done in early 1985 when only five losses had been
sustained, the data have been partioned at that point. Table 1
gives data for the first five losses and Table 2 for the succeeding
22 losses. The first set of data was used to predict the loss rate
for the midpoint of the period covering the last 10 losses, and
compared with the average loss rate for those losses. Parameters
assessed are A and B in the equation

he
m A

where m is the mean interevent time, and h is the cumulative flying
experience (hours) (Equation 3). Studies of similar US aircraft
indicate that a good a priori value for B is G.247. Comparisons of
results using Least Squares, MLE and Jackknifed MLE have been given,
as well as the effect of the a priori information.
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Table 1. FIRST FIVE F-18 LOSSES

LOSS CUMULATIVE OPERATING INTER EVENT TIME
(i) EXPERIENCE (hi) (ti - hi - hi_1 )

0 0

1 3337 3337

2 4379 1042

3 27300 22921

4 45805 18505

5 64717 18912

Table 2. F-18 LOSSES SIX ONWARD

LOSS CUMULATIVE INTER EVENT TIMEI LOSS CUMULAT TVE INTER EVENT TIME]
(i) OPERATING (ti - hi - h1 _,) (i) OPERATING (ti - hi - hi- 1 )

EXPERIENCE EXPERIENCE
(hi) (hi)

6 75430 10713 17 3bL676 10133
7 124248 48818 18 397609 7933
8 143495 19247 19 404867 7258
9 154720 11225 20 456060 51193

10 198658 43938 21 462696 6636
11 248657 49999 22 472105 3409
12 304747 56090 23 490221 18116
13 347378 42631 24 490978 757
14 349723 2345 25 498631 7653
15 379543 29820 26 519600 20969
16 379543 0 27 519600 0

Equation 6 was suitably modified (by taking logs of A and hi and
estimating log m, by log t,) then Least Squares regression was
applied, yielding:

A - 0.734 B - 0.891

i4
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Application of MLE yielded:

A - 0.356 B -0.831

And using the jackknife with th~e XLE estimates gave:

A - 0.0571 B - 0.655

Should a value of B be selected for a priori reasons then only one
parameter needs to be estimated, allowing an estimate of the
confidence interval for that parameter when Jackknifed. in this
instance previous studies of United States Air Fcrce (JSAF) aircraft
have shown tbat over hundreds of attritions for both single and twin
engine F/A type aircraft the best estimate for B is 0.247. Using
this value qives the following results:

"A by least squares - 0.00142

"A by MLE - 0.00101

"A by MLE Jackknifed - 0.00096

and the 90 per cent interval (with 40 of freedom, t -2.1)
is: 0.0047 > A > 0.00036

15. Repeating this work for the whole data set (Tables 1 and
2) produced the results shown in Table 3.

Table 3. RESULTS FOR ALL F-lB LOSSES

METHOD A B A FOR B -0.247

Least Squares 0.000015 0.203 0.00373

MLE 0.000538 0.191 0.00105

Jackknifed MLE 0.00108 0.249 0.00104

90% Confidence interval, -- 0.00077 (Lower)

260 freedom, t -1.7 0.00141 (Upper)
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k6. Comparing these figures with the earlier values based on
Table 1 it can be seen that the least variation in results occurs in
the Jackknifed XLE results, except for the one parameter case where
the differences in the MLE case and the Jackknifed MLE are too small
to be significant. Further, if the a priori value for B really is
the 'true' value for B, then the Jackknifed results were closer to
that value with both data sets.

27. Figure 1 shows the attrition data (Tables 1 and 2) as
times between losses, and the two parameter lines generatul by the
three different methods using the Table 1 data. Although none of
the lines produces an excellent result for the Table 2 data, it is
not difficult to see from this that the Jackknifed Line is the best
predictor. Using the a priori information with Table 1 data
improves the prediction as shown in Figure 2. It is difficult to
see which line is best, based on the Table 1 data alone, but when
all data are included with these lines, it is clear that the
Jackknifed line is best for the following reasons:

a. the MLE and Jackknifed lines from Table 3. B - 0.247
(based on 27 losses) would be indistingu iable from
line J Figure 2 (based on five losses) drawn on
Figuve 2; and

b. bearing in mind the shape of the exponential
distribution and the fact that its median is closer to
zero than its mean, then the Least Squares line is
probably the poorer predictor because it has 13 points
above the line and 14 below.

It should be noted that although the differences between the lines
look small, the figures are drawn on log paper. Mean times between
events as estimated by lines M and J are nearly half as much again
as those estimated by line L in Figure 2. Table 3 indicates almost
a fourfold decrease in the mean times estimate for the Least Squares
result over the other two methods. These are factors which can have
a major impact when considering attrition buys. A further advantage
from using the Jackknifing method is the availability of confidence
intervals on the estimates which have been illustrated in this
example, by the 90 per cent confidence interval (Figure 2).

28. The cumulative losses prediction is also of interest and
is plotted for the one parameter Jackknifed MLE method, in Figure 3
along with the data. It should be noted that the confidence
interval relates to the line and not the data, and that a
particularly 'good' or 'bad' run of losses early in the loss history
will shift all the following losses in relation to the line and
intervals - i.e. the data points are not independent in this form.
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29. If confidence intervals are important it may be necessary
to check that a Normal approximation to the psuedo values is
appropriate. In practice it may be found that for attrition
modelling the interval overestimates a. little on one side and
underestimates a little on the other. This may be due to the long
tail of the exponential distribution. Since a conventional variance
definition is used with t:, it would seen reasonable to use
non-parametric statistics as an alternative for interval estimation.
Reference 5 gives some such methods.

30. A quick check on the appropriateness of an assumption of
Normality can be done by sorting the data (t-,) and plotting the
result at equal intervals on Normal Probability paper. Figure 4
illustrates this for Table 1. An adequate straight line fit to the
data indicates Normality. The values for all t.- calculated for
Table 1 data are shown in Table 4. Included in the table are
columns j which give the sorted order for the preceding column.

Table 4. INTERMEDIATE JACKKNIFE RESULTS

INDEX ln(A) RESULTS B RESULTS ln(A) RESULTS COMMENTS
(i) FOR B - 0.247

t_, J t_, i t_, j.

0 -1.03 - 0.83 - -6.90 - Pure MLE Result
- i.e. t-0
estimates ln(A)
and B

1 2.66 5 1.18 5 -7.02 2

2 -3.05 1 0.64 1 -7.09 1

3 -1.52 2 0.76 2 -6.66 5

4 -0.81 3 0.86 3 -6.82 4

5 -0.15 4 0.93 4 -6A84 3

Not_ .

1. Columns J give the sorted t-i order.

II1I

bI
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CONCLUSION AND SUMMARY

31. Tris paper has briefly indicated a methodology that may be
followed in analysing attrition data, that Is preferable to
classical least squares type approaches. It has also givei the
rationale and underlying assumptions behind the work and
demonstrated (through an example on F/A-18 aircraft attritions) the
sorts of difference3 in results that might be expected.

32. The use of MZZ methods are strongly recommended in this
area, and the use of th& Jackknifing is also commended whether or
not MLE is used. A program has been written in PASCAL for
attritions (using ML! and Jackknifing) and is available through
Refarence 3.
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